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List of Terms: 

F = Forward scattering coefficient fo r  diffuse incidence 

F ' = Forward scattering coefficient for  parallel incidence 

B = Backward scattering coefficient for diffuse incidence 

B' = Backward scattering coefficient for  parallel incidence 

p = The absorption coefficient for  the diffuse flux 

= The absorption coefficient for  the parallel flux 

t = Diffuse flux in the forward direction 

s = Diffuse flux in the backward direction 

Ix' = The residue of the primary beam 

J(e) = Spectral radiant intensity 

A, = Fraction of total absorptance assigned to the diffuse flux 

AP = Fraction of total absorptance assigned to the parallel f lux 

% = Total absorptance 

R = Body reflectance, diffuse incidence 

R '  = Body reflectance, parallel incidence 

T = Body transmittance, diffuse incidence 

T'  = Body transmittance, parallel incidence 

7 ' = Unscattered fraction of the incident beam transmitted 

7; = Fraction of incident beam diffusely transmitted 

P 

' = Unscattered fraction of the incident beam reflected 
P P  

pd = Fraction of incident beam diffusely reflected 

r = External surface reflection coefficient, parallel incidence 

r = Internal surface reflection coefficient 

1 



In ti-oduc ti on 

Beginning with the fact that the units of the absorption coefficient are inverse 
S 

4 
centimeter, it  i s  apparent that some distinction should be made between the ab- 

sorption coefficients p' and p assigned respectively to the parallel and diffuse 

fluxes permeating a medium. It is the purpose of this paper to show that these 

coefficients can be determined simply and directly by goniometric measurements. 

In this approximate treatment, we omit the more general case,  in which the ab- 

sorption coefficient may exhibit a directional dependence and consider only the 

mean path associated with the two coefficients. W e  will assume that the material  

is optically thin, macroscopically homogeneous and that first order  scattering 

predominates. Further,  we will consider materials in which the scattering is 

concentrated below the cri t ical  angle. Fo r  transmitting materials these assump- 

tions a r e  not excessively restrictive. It is presumed throughout that the sample 

is optically plane and parallel, that the measured quantity, the radiant intensity 

I 

~ 

l is monochromatic, and that edge effects are minimal. 

Theorv 

The differential equations describing the fluxes permeating a scattering 

medium a r e  given by,' p 2  t 3  

= F' 1: - pt - Bt + Bs 

ds 
dx 

- -  B' Ix' - ps - Bs + Bt 
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a 
If as predichted, higher scattering orders  are negligible, then we can simplify 

(1) and (2) and write, 

The attenuation of the primary beam is given by, 

dIx' 
- -  

dx - - ( p ' + B ' + F ' ) I x '  

If we let, 

and impose the boundary conditions. 

x = 0 ,  t = o  

x = x ,  t = T '  - Ix' 

the following solution is obtained, 

e-Px F '  I,' 
1) 

{ e - ( ~ ' - p + B ' + F ? ~  - 
*' - Ix' = (p - p' - B' - F' ) 
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which we will approximate by, 

T' - Ix' = F ' X ( 1 - p ~ )  1; 

Similarly, from the boundary conditions 

x = 0 ,  s = R '  

x = x ,  s = o  

we find that, 

(4) 

R '  = B' X ( 1 - p x ) I , '  (5) 

It should be noted that equations (4) and (5) are, as expected, independent of 

G' and that linearily with thickness as required by pr imary scattering is indi- 

cated for  small px. 

Now in traversing a layer dx a fraction of the primary residue is scattered 

and the remainder transmitted, each fraction subject to a particular absorption 

process. In view of this partitioning of fluxes, i t  is clear from (4) and (5) that 

(F '  X t B'  X) px represents the portion of the diffuse flux absorbed. Similarly, 

we will let e-q" p' x , where q' = p' t B' i- F' , represent the portion of the un- 

scattered residue absorbed. It is assumed here that I,' is equal to  unity. The 

total absorb- is then, 
+\ ux 

= (F'  X i -  B' X)px t e-qlxp' x 

--hills 
a as conservation requires,  
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The fraction of the total absorptance we can assign to the diffuse f lux  is obviously, 

(F' X f B' X) px 
(F' X + B' X) px + e-q" p' x 

AT 
- 

AD - 

Substituting from (4) and (5) we have for small  p x ,  

(T' - Ix' + R') px 

(T' - Ix + R') px f I,) p' x AT 
- - 

AD (9) 

Essentially equations (4) and (5) pertain to a one dimensional medium. 

Consequently, the coefficient, p is not given in t e rms  of an actual path but ra ther  

a thickness X e 4  It suffices for  our purpose if we consider a mean path. The 

probability that a fraction of radiation will be scattered within a solid angle 

d w  = s i n e d e  dcp 

in the direction B is given 

where S( 0 ,  cp) is the scattering function. 

case  the mean direction i s ,  

Therefore, for  an axial symmetric 

Since the scattering function is directly proportional to the radiant intensity, J (  0 )  

for  either conservative o r  non-conservative scattering it suffices for  most cases  
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to plot the flux, 

BT J(") sin o i  M 

as a function of 6 and determine the mean by inspection. For example in figure 

(3)  the indicated mean of about 28.5" is in good agreement with the calculated 

value. It follows then that if ( e )  is the mean direction, then X/<COS 8) is the 

mean path. Hence, 

Consequently, (9) can be written as, 

If we now consider the boundary effects resulting f rom the refractive dis- 

continuity, the parallel and diffuse fractions of radiation transmitted and re- 

flected a re ,  
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where, 

I .  

(T' - 1 ' )  ( 1  - r 2  R) t r 2  R' T 

(1 - r2 R)' - r: T2 
w = ( 1 - r 2 )  

R' (1 - r 2  R) t r Z  (T' - 1') T 
v = ( 1 - r 2 )  

(1  - r 2  R)'- r: T2 

For transmitting materials,  r ,  , r 2 ,  R and R' are often relatively small. We can 

therefore rewrite the previous equations as, 

7 ' - (1- ro )2  I '  
P 

TD' - (1- r , )  ( I  - r 2 )  (T' - 1') 

P P  

p; - (1- r o )  (1 - r 2 )  R' 

' - io t r ,  (1 - r o ) 2  1 ' 2  

Now assuming that, 

A, - px f p' x 
and substituting (12.a), (13.a), and (15.a) in (9.a) we have approximately, 

Similarly we can show that, 

I 

AT P 
p ' x  - 

(7; f p; ) / ( c o s  8) + 7; 

(12 .a) 

(13.a) 

(14.a) 

(15.a) 
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Procedure : 

Since the measured flux has been refracted and reflected at the boundary 

and our immediate concern is with the internal angular distribution, it is neces- 

sa ry  that we determine J 

for  the moment we ignore reflection losses and consider only the refractive 

effect at the boundary, then the flux incident must equal the flux emerging at the 

boundary. Therefore, 

in te rms  of the measured radiant intensity JOB).  If 
(6 )  

J ( 8 )  dm 

o r  

The ratio of intensities is then equal to the inverse ratio of their  respective solid 

angles. F rom Snell's law 

n s i n e  = n '  s i n e '  

we find that, 

n cos B dB = n '  cos 6' de' 

Hence, 

cos e x ,2 ~ 

cos e '  
dw ' s i n B '  de' dcp - -  
d w  - sined6dcp 

which can also be expressed as, 

- -  da ' - n2 41- s in2  e ' /n2 
cos 8 '  do 

a 



F o r  normal incidence th i s  reduces to the more familiar relationship, 

The two intensities are related by, 

If we now include reflection losses  at the boundary, 

where R(B)  is the general Fresnel  expression, 

- 1 s i n 2  ( B ' - Q )  { + cos2  ( e  + e ' ) }  
R(B)  = 

~ i n ~ ( 6 t . O ' )  cos2 ( e '  - 8) 

The procedure is now rather  straightforward. From the measured intensity 

J ( d , ,  J(s) is calculated using equation (20). As  an example, the two intensities 

are shown in Figure (1) for a 3.8 mm thick I r t ram I sample at 1p. The Fresnel  

reflection coefficient for a refractive index of 1.38 is plotted in  Figure (2). Now 

as shown in Figure (3),  the flux J ( B )  dwis plotted and a mean direction determined. 

Returning to equation (7 )  the total absorptance can be deduced by integrating the 

forward and back scattered flux,' 
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and 

Alternatively, TD1 and p,,’ can be determined directly with an ellipsoidal or inte- 

grating sphere photometer. The transmittance, T ~ ’  i s  readily determined. The 

-*eflectance, ppl however, is not generally susceptible to direct  measurement. 

We can, however, solve equation (12.a) for I ’  and then substitute in equation (14.a). 

So that, 

. 

P P  - r o  (1 + Td2/(1- To)’} 

The r e s t  is a matter of substituting in the appropriate equation. 

Results : 

We can in some measure validate both the assumptions and method outlined 

here  for  determining the absorption coefficients p and p i .  We begin by restating 

equations (13.a) and (15.a), 

Again, following Ryde we note that as Q - 1 andP - 0, the equations f o r  the body 

transmittance, 

QK t Pe-qx B sinhKX 
( p  + B )  sinhKX + K cosh KX - (Q - 1) e-q‘x Ti  = 
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and reflectance, 

Pe-q'X K -t QB s inh KX R' = - P  ( p  + B )  sinhKX -t K cosh KX 

can be written as ,  

K 
( p  + B )  sinhKX -t KcoshKX T ' - T  

and 

B sinhKX 
( p  + B )  sinhKX -t K cosh KX R ' - R  = 

(27.a) 

(28.a) 

where, 

KX = dpX (,uX -t 2BX) (29) 

Significantly, both R and T are a function of p and B. Furthermore,  an approx- 

imate value of the backscattering coefficient, B is obtained from the ratio, 

R - BX s inh  KX 
T -  KX 
- 

Expanding s inh KX, 

we find that, 

R 
- % BX T 

11 



l o r  substituting from (25) and (26), 

I 

PD 
BX - 

7 P ' ( I  - r 2 )  

(1 -  r o )  
rD' + 

The following measured values were obtained, -rP' = 0.23, 7; = 0.45, 

pD' = 0.0725 and from (24) p,' = 0.0274. Assuming r 2  = 0.15 and given that 

r o  = 0.026, (cos 0) = 0.879, we find from (30),  (29) and (16) that BX = 0.1114, 

KX = 0.246 and px = 0.1586. Inserting the above values in (25) and (27.a) we 

find that T = 0.785 and T = 0.769, indicating agreement within 2%. Similarly, 

f rom (26) and (28.a) we find that R = 0.08624) and R = 0.087571, indicating agree- 

ment within 1.5%. The measured values for other thickness of I r t ram I further 

substantiates the values obtained for  BX and px reported here. a 

Conclusions : 

An approximate method has been outlined fo r  determining the absorption 

coefficient p and p' which appears to be applicable to optically thin materials 

I where primary scattering predominates. The method has at least the advantage 

I of following directly from a fairly conventional measurement. The coefficients 

are given in te rms  of the reflected and transmitted fluxes weighted by their 

mean paths. Some of the assumptions made, particularly a method for  deter- 

mining the interval reflection coefficient, r 2  will be the subject of another paper 

now in preparation. 
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Figure 1. Angular distribution of radiant intensity for lrtran I (3.8 mm) at  1 micron 
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Figure 2 
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Figure 3. F lux distribution at  normal incidence for lrtran I (3.8 mm) a t  1 micron 
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